Skip to content

Getting the Point about Points

ADMIN | 24-05-2012

All that these devices do is measure points in space. They do that with tremendous variety, which is how they differentiate themselves from each other.

Hexagon pattern 1

Two weeks ago, Spatial hosted a booth at the CONTROL Exhibition in Stuttgart, Germany.  I hate to follow John's recent post with another one about a trade show, but this one is worth discussing - let's just call it "Interesting Shows - part 2."

For anybody not familiar with it, CONTROL is a huge show aimed at the dimensional metrology market.  Whenever I go to trade shows, I am amazed at the scale of the market (4 huge buildings for this one) and the specificity of the vendors.  
 
The range of devices was quite interesting.  There were many varieties of bridge CMMs, but there was also a wide range of hand held measurement machines.  One was a small metal ball with mirrors inside.  You put the ball on the part you wish to measure, and a nearby camera shoots a laser at the ball, which reflects it back.  A similar idea was a wand that looked like the ones used for frisking at airport security.  You poke the point to measure, and again a camera measures specific points on the wand which allow it to infer the location of the point you poked.  After wandering the halls for a few days, a simple understanding of all of it gelled in my mind.  
 
All that these devices do is measure points in space  
 
point cloudsOf course they do that with tremendous variety, which is how they differentiate themselves from each other. Differentiation can be on the accuracy of measurement, point gathering speed, physical access (e.g. you can't put the wing of an airplane in a bridge machine, so you use a hand held device), and much more.  But the one thing they have in common is that they're still all trying to do one basic thing - give you three very, very accurate coordinates, many, many times over.  
 
As a small indicator of just how hard this actually is, I saw a few vendors selling only the granite slabs that go into the CMMs.  Imagine - there are entire companies whose only business is to make sure that they give you something very flat on which to put your measurement machine.  Now that's accurate.
 
I realize that to anybody working in this market, this is a simple and obvious concept, but sometimes working on software components, you get so focused on what a specific customer's application is doing that you only see the trees and not the forest -- or maybe the points and not the cloud :-).
 
Which brings me to the software side of things. The hardware is a major investment and differentiator in the CMM market, but good software is essential to run it.  A good CMM program will do things like help the programmer and/or machine operator easily determine which points to measure, it'll tell the machine how to do that in the most optimal way, and it will analyze the gathered points and report the results back to the user.  
 
PMI partObviously, Spatial is very involved in this part of the measurement market, particularly as more and more systems are moving to measuring and comparing to 3D parts rather than 2D drawings.  One thing in particular struck me throughout the show - almost every discussion I had turned to the subject of PMI (or GD&T) at some point.  There was a time not so long ago when using PMI in CMM applications was a new idea.  When we first added PMI to our 3D InterOp product line, we had many customers excited about it, but mostly in principle. Very few were actually doing anything with it.  Today the discussion is totally different.  We're seeing applications do everything from drive automatic test plan creation to automatic post-process comparison between the gathered points and the tolerances originally specified by the designer.  
 
Getting out to see the physical products in person is a tremendous help to anybody working in software.  For me, I finally internalized both the simplicity and the complexity of dimensional metrology and how we fit into it.  
 
Anybody out there have suggestions for another good educational experience in your market?  
 

You might also like...

5 Min read
CGM Modeler
Software components are like the stage crew at a big concert performance: the audience doesn’t see them, but their...
Application Lifecycle Management Flow
4 Min read
CGM Modeler
When you hear the term, Application Lifecycle Management (ALM), you likely think about the process that a software...
8 Min read
CGM Modeler
What is Computer Aided Manufacturing The CAM Market Who Uses CAM Software? Trends in CAM What do CAM Software...
8 Min read
CGM Modeler
There’s a lot of confusion around what the terms additive manufacturing and 3D printing mean.
4 Min read
3D Modeling
Additive manufacturing, often referred to as 3D printing, is a computer-controlled process for creating 3D objects.
7 Min read
3D InterOp
Table of Contents Why industrial automation is important Advantages and Disadvantages of Industrial Automation The...
5 Min read
CGM Modeler
Computational Fluid Dynamics (CFD) is a type of analysis that provides insight into solving complex problems, and...
2 Min read
CGM Modeler
WRL files are an extension of the Virtual Reality Modeling Language (VRML) format . VRML file types enable browser...
Voxel model example
3 Min read
CGM Modeler
Voxels are to 3D what pixels are to 2D. Firstly -- let’s examine what pixels actually are. Everything you see on your...
Point_cloud_torus
2 Min read
CGM Modeler
Point-cloud modeling is typically used in the process of 3D scanning objects. Rather than defining surfaces through...
Polygonal Modeling
2 Min read
CGM Modeler
Polygonal (or polyhedral) modeling is the most common type of modeling for video games and animation studios. This type...
aerodynamics-CFD
9 Min read
CGM Modeler
Computational fluid dynamics (CFD) is a science that uses data structures to solve issues of fluid flow -- like...
BREP Model example
2 Min read
CGM Modeler
BRep modeling, or Boundary Representation modeling, is, in CAD applications, the most common type of modeling. BRep is...
Feature Recognition Zoomed
5 Min read
CGM Modeler
IN THIS ARTICLE: What is FEA (Finite Element Analysis) Principles of Finite Element Analysis and Simulation Software A...
3YourMind and Spatial
3 Min read
3D Modeling
As manufacturers begin to rely more and more on additive manufacturing (AM), moving from a few select piece parts that...
Voxeldance and Spatial
2 Min read
3D InterOp
To the uninitiated, 3D printing may seem a simple process — download your CAD file and hit print. But the world of...
6 Min read
3D Interoperability
The increased use of mobile devices in engineering processes has the interesting side effect of requiring the...
missing_triangles.png
3 Min read
3D Interoperability
When coming from a standard format, very often that data has to be repaired or improved, and Spatial does that as part...