Skip to content

3D Printing Enables the 4th Industrial Revolution | Spatial Blog

ADMIN | 26-02-2016

The basis of additive manufacturing is 3D printing, which delivers many advantages to manufacturing.

Hexagon pattern 1

The term disruptive technology is overused and often can’t be justified. But in the case of additive manufacturing, it truly applies. This technology now makes complexity free, ushering a new age of manufacturing that allows designers to no longer be constrained by manufacturing methods.

The basis of additive manufacturing is 3D printing, which delivers many advantages to manufacturing, not the least of which is the freedom it delivers to the design process combined with higher quality of the final product.

Design for Manufacturing is History

For centuries designers always have had to make their output conform to the manufacturing process, breaking up a complex assembly into components that could be actually manufactured. Often this process requires simplifying the assembly, potentially requiring compromises to the overall solution. And once the assembly has been broken up into component parts; the molds and tooling to manufacture the parts had to be designed.

Because additive manufacturing means an end to molds and most tooling, building prototypes is no more expensive to produce than the production model. This fact means freedom — freedom for the designer to fully explore the design space, building a range of solutions that can be tested in the real world. Computer simulation can only go so far in providing data. Imagine a world where an engine designer can track test various manifold designs easily. Enter the world of design-driven manufacturing.

Complexity is Free

Additive manufacturing brings in an age of where complexity is practically free. A complex object is just as easy to print as a simple one. In other words, because there are no molds and castings that place (often severe) limits on what can be built — the only constraint is what the designer can imagine.

When complexity becomes free, the ability to design the best solution is enhanced. Solutions there were impossible to build in the past are now cheap and easy.

Bespoke Manufacturing

Because complexity in now free and molds are no longer needed, the cost of producing one of something is nearly the same as 1,000. This fact opens the door to bespoke manufacturing where custom versions of products are easy to produce. Gone is the concept of high-cost short runs and setup charges.

For example, this concept can apply to the medical device industry where items from artificial hips to complex dental implants can be easily created, just made to order. A day could soon arrive where a hospital can take measurements of a patient, send the data to device manufacturer who updates a 3D model and transfers the new model to manufacturing facility to print out a hip joint, for example, out locally. A hospital would no longer need to order and stock a range of devices to keep on the shelves.

But bespoke manufacturing is coming to consumer products. Local Motors is now printing cars, yes, cars. The concept is that the body is 3D printed using a composite of ABS plastic and carbon fiber, with the rest of the car built on a standard platform in order to meet safety requirements. The first car took just over two months from design ready to prototype. Soon consumers will be able to control the look of their car and modify major design parameters to achieve a custom fit.

Local Motors LM3d

Local Motor's LM3D 3D-Printed Car (Render Courtesy of Local Motors)

Higher Quality

Because additive manufacturing goes hand in hand with 3D modeling, the need for manufacturing drawings is eliminated. The model becomes the specification, resulting in higher quality as the original design specifications do not need to be translated to drawings and then converted to molds, tooling and machining routines.

Product quality is improved in two ways:

  • With the elimination of molds, gone are alignment issues and mold marks, or the drift of dimensions due to mold wear — the 1,000th unit is identical to the first.
  • Factory-to-factory variation is eliminated, as all are working from the same 3D model. Differences in tooling and manufacturing experience play no role

Moreover, the number of manufacturing steps is reduced, which not only reduces the cost, but decreases the chance for errors in the process.

What Does This Mean for Software Suppliers

This revolution in manufacturing, with its improved capabilities to realize complex designs, requires that the software used is cognizant of additive manufacturing workflows and purpose built to support those requirements. Designing, editing, healing, and orienting a 3D model for printing are critical steps, and with increasing production volumes and complexity, maintaining high quality through automation is paramount. Effective solutions will handle all aspects of this workflow and allow for seamless translation from precise and polygonal models to the printer’s machine code, and ultimately the final product.

Additive manufacturing is already playing a greater role in the aerospace and medical industries and moving into other low-volume manufacturing where quality and precision are paramount. But higher volume additive manufacturing is coming, allow for bespoke manufacturing even for consumers, ushering in a fourth industrial revolution. Those who adapt will thrive.

You might also like...

6 Min read
Additive Manufacturing
The robotics industry is growing at an incredible pace, and the future applications for robots continue to be...
8 Min read
Additive Manufacturing
When following a required workflow in a software application, few things are more frustrating to the user than...
5 Min read
Additive Manufacturing
The main phases involved in additive manufacturing are that of design and the manufacturing process. Practically, the...
Rocket engine being manufactured
5 Min read
Additive Manufacturing
Manufacturing is a challenge in the aerospace industry. Not only are aerospace parts extraordinarily complex, but they...
Types of Additive Manufacturing
6 Min read
Additive Manufacturing
In the past, manufacturing businesses used subtractive processes like molds, cutting, and drilling to create products....
4 Min read
Additive Manufacturing
Additive manufacturing (3D Printing) is sweeping across the industrial automation world.
6 Min read
Additive Manufacturing
Ultrasonic Additive Manufacturing (UAM), also known as Ultrasonic Consolidation (UC), is an additive manufacturing (AM)...
Application Lifecycle Management Flow
4 Min read
CGM Modeler
When you hear the term, Application Lifecycle Management (ALM), you likely think about the process that a software...
9 Min read
CGM Modeler
SLS in Additive Manufacturing is used to convert 3D CAD designs into physical parts, in a matter of hours.
8 Min read
CGM Modeler
There’s a lot of confusion around what the terms additive manufacturing and 3D printing mean.
4 Min read
3D Modeling
Additive manufacturing, often referred to as 3D printing, is a computer-controlled process for creating 3D objects.
aerodynamics-CFD
9 Min read
CGM Modeler
Computational fluid dynamics (CFD) is a science that uses data structures to solve issues of fluid flow -- like...
Feature Recognition Zoomed
5 Min read
CGM Modeler
IN THIS ARTICLE: What is FEA (Finite Element Analysis) Principles of Finite Element Analysis and Simulation Software A...
3YourMind and Spatial
3 Min read
3D Modeling
As manufacturers begin to rely more and more on additive manufacturing (AM), moving from a few select piece parts that...
Voxeldance and Spatial
2 Min read
3D InterOp
To the uninitiated, 3D printing may seem a simple process — download your CAD file and hit print. But the world of...
8 Min read
Additive Manufacturing
It is a competitive world out there, and additive manufacturing (AM) OEMs face pressures like all manufacturers do when...
4 Min read
Additive Manufacturing
3D visualization is the process of using 3D visuals to analyze designs or scenarios.
4 Min read
Additive Manufacturing
3D visualization -- interchangeably used with 3D modeling, 3D graphics, 3D rendering and computer-generated imaging...